ANÁLISE DA PRECIPITAÇÃO NA CIDADE DE SALVADOR (BA): CORRELAÇÃO ESTATÍSTICA DE SETE ESTAÇÕES PARA MODELAGEM DE PREVISÃO

<u>Tayná Freitas Brandão</u>¹; Rosângela Leal Santos².

- 1. Graduanda em Engenharia Civil Estagiária da Estação Climatológica de Feira de Santana (nº 83221) Bolsista Pibic/CNPq UEFS/DTEC. E-mail: taynacivil@gmail.com
- 2. Doutora em Engenharia de Transportes -Professora Assistente do Departamento de Tecnologia da Universidade Estadual de Feira de Santana. E-mail: rosaleal@uefs.br

PALAVRAS – CHAVE: Precipitação, Modelagem de Previsão, clima.

1. INTRODUÇÃO

A ação do homem no espaço faz com que as condições do sistema natural sejam alteradas, o que promove novos processos, num sistema de retroalimentação, uma vez que a natureza não é passiva às intervenções do homem. O espaço urbano representa uma das maiores expressões das transformações provocadas pelo homem na paisagem natural.

Sendo assim, é evidente que um melhor conhecimento da distribuição rítmica da pluviosidade na cidade de Salvador, tanto na compreensão do número e gravidade dos transtornos causados à cidade em eventos de chuva intensa, como no planejamento e execução de medidas de caráter corretivo da infra-estrutura e de prevenção de danos ambientais, sociais e econômicos. (ZAVATINI,2002).

Assim, para a modelagem de previsão será caracterizada a variabilidade sazonal da chuva, sua correlação espacial com base nas séries pluviométricas de postos pluviométricos distribuídos pela cidade, pré-definidas com as seguintes localizações: CIA do Aterro Metropolitano de Salvador, Aterro Canabrava, INGÁ em Itapuã, Estação climatológica do INMET de Ondina, Ilha amarela, Monte Serrat, Base Naval de Aratu.

2. MATERIAIS E MÉTODOS

Neste estudo, foram utilizados dados diários de precipitação de sete estações climatológicas de Salvador junto ao Instituto de Gestão de Águas e Clima (INGÁ), órgão vinculado ao Governo da Bahia.

Foram utilizadas as séries pluviométricas de postos pluviométricos distribuídos pela cidade de Salvador, pré-definidos com as seguintes localizações: CIA do Aterro Metropolitano de Salvador, Aterro Canabrava, INGÁ em Itapuã, Estação climatológica do INMET de Ondina, Ilha amarela, Monte Serrat, Base Naval de Aratu. (**Figura 1**).

Figura 1: Localização dos postos pluviométricos distribuídos pela cidade de Salvador (BA). Fonte: Defesa Civil.

Escolheu-se o quadriênio de 2006 a 2009, por este ser o período com dados pluviométricos dos sete postos distribuídos pela cidade de Salvador, o que possibilita a interrelação espacial dos dados, devido à inexistência de dados de estações automáticas além da estação do INMET – Ondina, foi inviável realizar a análise da intensidade horária da chuva conforme proposto em plano de trabalho anterior, optando-se por uma espacialização dos dados diários e mensais.

Para o mapeamento da variabilidade espacial de um determinado atributo, é necessário ter um banco de dados que apresente o valor e a localização do atributo. Esse banco de dados é normalmente obtido em uma amostragem não regular de pontos, dentro da área avaliada, e é denominado de dados brutos. Assim, para se obter uma grade regular de pontos, é necessário o uso de interpoladores para estimar pontos em locais que não foram amostrados.

A interpolação dos dados de precipitação pluvial mensal foi efetuada utilizando-se o programa Surfer 9.0 (Goldem Software Inc. 2002), através do algoritmo de mínima curvatura. Tendo como dados de entrada o total precipitado e a localização (latitude e longitude) dos registros, este fornece como dados de saída o mapa de interpolação do total precipitado em pontos sem registros. Dessa forma, foi utilizada a interpolação por mínima curvatura para a espacialização dos dados de precipitação pluviométrica das sete estações, para se obter a distribuição da precipitação na cidade.

3. RESULTADOS E DISCUSSÃO

Segundo a Superintendência de Estudos Econômicos e Sociais da Bahia (2000), o clima de Salvador é do tipo tropical úmido a super úmido, com precipitações médias anuais

de 2099 mm e temperatura média anual de 25,3°C, sendo os meses compreendidos entre setembro e fevereiro os menos chuvosos, com precipitações entre 111 e 132 mm.

O trimestre mais chuvoso, representado pelos meses de abril, maio e junho, apresenta uma precipitação média mensal que varia de 251 mm a 325 mm. Os meses com excedente hídrico superior a 100 mm correspondem a abril, maio, junho e julho, enquanto a maior deficiência hídrica registra-se nos meses de janeiro e fevereiro com 8,5mm e 3,9mm, respectivamente. Este fato foi verificado para o período em estudo, conforme **Tabela 1** e **Figura 3**.

Tabela 1: Precipitação Mensal Média das medições obtidas em todas as estações pluviométricas.

	2006 (mm)	2007 (mm)	2008 (mm)	2009 (mm)
JANEIRO	36,03	25,43	9,06	30,90
FEVEREIRO	27,53	199,64	139,10	83,57
MARÇO	63,48	120,03	171,14	41,56
ABRIL	534,31	149,66	161,39	383,15
MAIO	441,00	187,58	254,95	706,50
JUNHO	419,40	139,14	187,99	
JULHO	133,44	137,26	146,82	
AGOSTO	101,06	102,68	79,50	
SETEMBRO	99,56	86,23	41,99	
OUTUBRO	196,73	60,70	50,51	
NOVEMBRO	180,66	14,24	60,72	
DEZEMBRO	14,06	18,77	101,80	

Fonte: INGÁ.

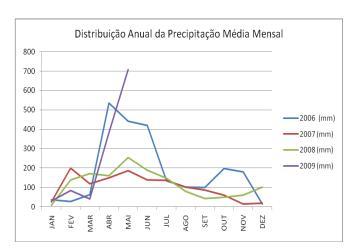


Figura 2: Precipitação Mensal Média das medições obtidas em todas as estações pluviométricas. Fonte: INGÁ.

O mês de Maio de 2009 apresentou um intervalo mínimo e máximo de interpolação de 500 e 900 mm, respectivamente, obtido através da análise com o software Surfer 9.0. Este mês apresentou a maior média de todas as estações no período estudado com aproximadamente 706 mm. (**Figura 3**)

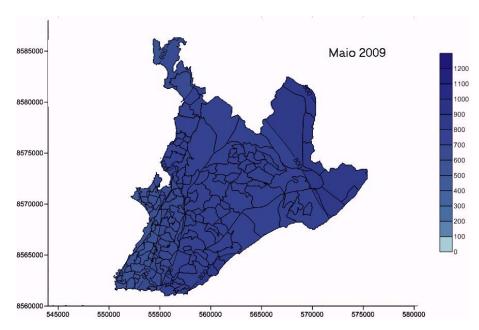


Figura 3: Espacialização das chuvas para o mês de Maio de 2009.

4. CONCLUSÃO

Na técnica empregada para a espacialização de chuvas pelo fato de ser um interpolador não exato, o método de curvatura mínima apresenta algumas vantagens e desvantagens, tais como:

Vantagens:

- A superfície estimada é independente da distribuição dos dados e da presença de ruído (noise);
- A superfície estimada é a mais suave entre as geradas por outros algoritmos que ajustam superfícies de dados amostrados;
- a superfície é absolutamente fiel aos dados originais, quando há apenas um valor amostrado por célula;
- há um menor número de formas estranhas, com exceção das bordas e do interior de células sem amostragem;
- é capaz de estimar além dos valores máximos e mínimos dos dados amostrados.
 Desvantagens:
- uma superfície suave é gerada, quer realmente exista ou não;
- existindo dados próximos às bordas pode haver geração de depressões ou picos nas bordas do mapa;

• formas estranhas podem surgir no centro das células que não contém pontos amostrados e se um número insuficiente de interações for especificado.

O software SURFER 9.0 atendeu satisfatoriamente ao objetivo empregado, uma vez que, ao se confrontar com as ocorrências, observou-se em todos os casos coerência de resultados. Pontua-se também a utilização do referido software para avaliações rápidas e que necessite de um resultado georreferenciado, devido sua facilidade de manuseio e a disponibilidade de várias ferramentas e técnicas de interpolação. (LANDIM,2000).

A partir da espacialização, pode-se comprovar que o mês que se revelou mais úmido na cidade de Salvador (BA) foi o de maio. Apresentaram precipitação superior a média também os meses de Abril e Junho.

Os mapas gerados a partir da modelagem de previsão utilizada se mostraram satisfatórios podendo ser utilizados para avaliar a distribuição da precipitação na cidade de Salvador (BA), o modelo pode inclusive ser adotado para a previsão de impactos pluviais pela cidade aliada a atuação da defesa civil do município, porém é necessário adotar uma margem de erro nos resultados finais obtidos pelo modelo.

Por outro lado, a análise espacial das chuvas na área urbana, para caracterização do clima urbano e existências de microclimas, só será possível mediante a ampliação da série histórica das estações existentes na cidade e a instalação de uma rede ampla de observação da dinâmica atmosférica.

5. REFERÊNCIAS BIBLIOGRÁFICAS

DNMET. "Normais Climatológicas (1961-1970)", Departamento Nacional de Meteorologia. Brasilia-Brasil. 84p. 1992.

GOLDEN SOFTWARE INC. User's Guide. Colorado USA, 619p. 2002.

GONÇALVES. N.M.S. **Impactos Pluviais e Desorganização do espaço Urbano em Salvador – BA**. São Paulo: Tese de Doutorado em Geografia Física, Universidade de São Paulo, 1992.

LANDIM, P.M.B. Introdução aos métodos de estimação espacial para confecção de mapas. Rio Claro: Unesp, 2000.

TUCCI, C.E.M., **Inundações Urbanas na América do Sul.** Porto Alegre: UFRGS, 2003.(capítulo 3) TUCCI, A. E. M. **Hidrologia: ciência e aplicação**. Porto Alegre: UFRGS, 2004.

WESTPHAL, M. F. O Movimento Cidades/Municípios Saudáveis: um compromisso com a qualidade de vida. Ciência & Saúde Coletiva, Rio de Janeiro: v. 5 n. 1, 2000.

ZAVATINI, J.A.O tempo e o espaço nos estudos do ritmo do clima no Brasil. **Geografia.** Rio Claro ,v. 27,n. 3, p.101-131, dez.2002.