ANÁLISE COMPUTACIONAL DO COMPORTAMENTO MECÂNICO DE VIGAS DE CONCRETO REFORÇADAS COM FIBRAS LONGAS

<u>Josué Andrade Costa¹</u>; Koji de Jesus Nagahama²; Anderson de Souza Matos Gadéa³ 1. Bolsista PROBIC/UEFS, Graduando em Engenharia Civil, Universidade Estadual de Feira de Santana (UEFS), e-mail: <u>icosta1br@yahoo.com.br</u>

Orientador, Departamento de Tecnologia (DTEC), UEFS, e-mail: <u>kjnagahama@gmail.com</u>
Co-orientador, DTEC, UEFS, e-mail: <u>agadea@gmail.com</u>

PALAVRAS-CHAVE: tração direta; fibra de sisal; método dos elementos.

INTRODUÇÃO

Os compósitos destacam-se por possibilitam a otimização das propriedades de engenharia pela associação de outros componentes em conjunto com materiais tradicionais. Na engenharia civil, os materiais compósitos mais utilizados ainda são aqueles à base de cimento, reforçados com fibras, destacando-se o cimento amianto (asbesto). Entretanto, pesquisas mostraram que o asbesto pode causar várias doenças, entre estas o câncer (DEMENT *et al.*, 2007 e RICHARDSON, 2009), o que provocou a proibição da utilização deste material em muitos países.

Considerando a abundância do sisal, haja vista que o Brasil é o maior produtor de sisal do mundo, cuja exportação chegou a gerar receitas superiores a 80 milhões de dólares (SUINAGA *et al.*, 2006), aliado ao baixo custo de produção, vislumbra-se assim um grande potencial, revelando-se como estratégia para o desenvolvimento nacional. A utilização da fibra de sisal como reforço para materiais de construção agregará valor ao produto e garantirá uma maior demanda para as fibras. Assim sendo, a utilização da fibra de sisal não desperta apenas um interesse no âmbito tecnológico, mas também sócio-econômico e ambiental.

Nenhum material, com função estrutural, poderá ser incorporado à construção civil sem que se possa prever o seu comportamento. Para isto são necessárias investigações experimentais e de cunho analítico e/ou numérico. Os experimentos ocorrem com muito mais freqüência (SAVASTANO JR *et al.*, 2006; TOLEDO FILHO *et al.*, 2002; SANJUÁN e TOLEDO FILHO, 1998), porém são processos lentos e onerosos, o que torna importante descrever teoricamente o comportamento deste compósito, para que as pesquisas tenham impulso e seja possível criar critérios de dimensionamento para o mesmo, garantindo a durabilidade e a segurança do elemento estrutural, permitindo assim a utilização do sisal na construção civil, com todos os benefícios agregados ao mesmo.

Neste sentido, o presente trabalho tem como objetivo simular o comportamento de algumas placas de matriz cimentícea, reforçadas com fibras longas de sisal, submetidas a esforços de tração direta, produzidas e ensaiadas por Lima (2004). Para a simulação computacional foi utilizado o programa DIANA 9.0

METODOLOGIA

Tendo em vista o esforço computacional verificado nas modelagens iniciais por elementos finitos, fez-se a opção de considerar a simetria da resposta estrutural em torno dos dois eixos do plano da placa, sendo adotado em todas as análises apenas um quarto da placa original, introduzindo-se adequadamente condições de contorno e carregamento associadas à simetria, reduzindo-se assim, o tempo despendido para se obter a resposta computacional. A malha de elementos finitos possuía um total de 300 elementos. Optou-se pela utilização do elemento de casca CQ40S do DIANA, baseados na teoria de Mindlin-Reissner, que considera os efeitos do cisalhamento transversal. As placas aqui modeladas foram produzidas, ensaiadas e denominadas de P3C2, P3C3, P6C2 e P6C3 por Lima (2004).

Para a modelagem do comportamento estrutural das placas compósitas foi necessário definir os seguintes aspectos para a matriz: modelo de fissuração, modelo de comportamento à tração e compressão, módulo de elasticidade, *Gf* (energia de fratura no Modo I), *h* (faixa de fissura), resistência à tração e compressão, além do β (fator de retenção ao cisalhamento). No caso da fibra de sisal, o importante era estabelecer o melhor modelo de comportamento, uma vez que já se conhecia seu módulo de elasticidade longitudinal.

A partir dos resultados experimentais de Lima (2004), definiu-se o módulo de elasticidade da matriz (35 GPa) e também da fibra (19,3 GPa). A resistência à compressão foi adotada como sendo dez vezes a resistência à tração, proporção esta bastante utilizada para concretos convencionais. O valor da faixa de fissura ("crack-band width") foi fixado em 7,2 mm, obtido através da equação proposta por Bažant e Oh (1983) onde $hc = da \cdot na$, com na = 3, uma vez que a argamassa pode ser considerada um concreto sem agregado graúdo e da = 2,4 mm (diâmetro máximo do agregado). Com não houve ensaios para a determinação do *Gf* também foi necessária uma retro-análise para sua quantificação. Para o parâmetro β , usualmente é utilizado é 0,2 (BAŽANT, 1997), o que foi adotado no presente trabalho.

O modelo de fissuração fixo foi o adotado para uma primeira análise, por se tratar de um modelo mais simples (ROTHS, 1988). Para o modelo de comportamento à tração adotouse o exponencial do DIANA.

RESULTADOS E DISCUSSÃO

As primeiras análises foram realizadas considerando-se comportamento linear elástico para a fibra. Nesses resultados, observou-se que a tenacidade obtida a partir da resposta computacional foi sempre superior àquela determinada para a resposta experimental. Isso é explicado pelo possível arrancamento da fibra da matriz. Segundo Lima (2004), quando as tensões de cisalhamento atingem o valor de 0,6 MPa, começa o processo de decoesão e posterior arrancamento das fibras, o que pode explicar a ocorrência do "softening" nas curvas experimentais.

Para simular o arrancamento das fibras adotou-se o modelo de comportamento para as fibras do tipo "softening" incorporado ao programa através de arquivo externo, reduzindo-se assim a capacidade da fibra de absorver esfoços de tração para representar a perda de capacidade da matriz de transferir esforço para a fibra.

Para criar o modelo de comportamento da fibra adequado para cada placa, foi necessário verificar em que nível de tensões normais inicia-se o arrancamento, monitorando as respectivas tensões de cisalhamento na matriz, para cada incremento de carregamento. Após esta análise, verificou-se que as tensões normais variavam de 90 MPa a 120 MPa aproximadamente para um cisalhamento de 0,6 MPa. Em seguida, realizou-se uma retro-análise para determinar os melhores modelos de comportamento para a fibra, afim de simular este arrancamento.

Utilizando como referência o modelo proposto por Naaman *et al.* (1991), o patamar e o primeiro ramo descendente, em todos os modelos de comportamento adotados para a fibra, representam o processo de decoesão e o outro ramo descendente o arrancamento, sendo todos os resultados obtidos por retro-análise. Para todas as placas a tensão máxima suportadas pela fibra foi de 95 MPa e o processo de arrancamento iniciou-se em 50 MPa, sendo o patamar inicial a única diferença entre os modelos encontrados para representar o processo de arrancamento da fibra em cada placa, ou seja, parte da energia necessária para completar o processo de decoesão.

É importante ressaltar que não somente a fibra influencia no comportamento pós-pico dos compósitos mais também a energia de fratura Gf. Desta forma, esta retro-análise levou também à determinação de Gf para cada laminado.

Na Figura 1 estão representados os correspondentes resultados tensão *versus* deformação para os corpos-de-prova estudados na presente análise, já introduzidos os comportamentos "softening" aplicados às fibras.

Figura 1 - Trajetória de equilíbrio das placas sob tração direta.

Nesses resultados percebe-se uma aproximação entre as curvas experimental e numérica com aperfeiçoamento significativo do modelo, que é comprovado quando se analisa a tenacidade de cada amostra em comparação com os resultados computacionais. O compósito P3C2 possui uma tenacidade de 693,64 kN/m3 enquanto na modelagem este valor foi de 707,37 kN/m3, um acréscimo de 1,94%. Para o P3C3 a tenacidade é de 983,03 kN/m3 contra 859,43 kN/m3 do modelo, uma variação de 14,38%, sendo este o pior resultado. O P6C2 tem uma tenacidade de 1684,15 kN/m3 contra 1783,71 kN/m3 do modelo, diferença de 5,91%. Por último, o corpo-de-prova P6C3 possui uma tenacidade de 1377,37 kN/m3, já o modelo computacional é de 1386,91 kN/m3, um diferença percentual de apenas 0,69% (melhor resultado).

CONSIDERAÇÕES FINAIS

Com base no que foi anteriormente descrito, é possível obter bons resultados na modelagem de placas de matriz cimentícea reforçadas com fibras de sisal, utilizando o software comercial DIANA, empregando o modelo de fissuração "smeared crack" mais simples; o fixo, sem a necessidade da utilização de uma malha de elementos finitos muito refinada. Para a realização de simulações através do modelo fixo de fissuração é necessário definir o modelo de comportamento na tração, a resistência à tração do material, módulo de elasticidade (*E*), a energia de fratura para o modo I de carregamento (*Gf*), o "crack-band width" (*hc*) além do fator de retenção ao cisalhamento (β). A resistência à tração do material, além módulo de elasticidade longitudinal (*E*), devem ser obtidos experimentalmente. O parâmetro *Gf* pode ser obtido através da equação (2.47) do CEB (1990) e o parâmetro *hc* pela equação proposta por Bažant e Oh (1983). Para o fator β deve-se utilizar o valor 0,2 proposto

por Bažant (1997). Quanto ao modelo de comportamento na tração deve-se utilizar o exponencial no caso do DIANA ou similar no caso de modelagens através de outros "softwares". No que diz respeito ao comportamento da fibra, conclui-se, principalmente, que é possível representar o processo de arrancamento da fibra introduzindo um "softening" no modelo constitutivo da fibra de sisal.

AGRADECIMENTOS

Os autores agradecem à UEFS, à CAPES e ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Estadual de Feira de Santana.

REFERÊNCIAS

BAŽANT ZP, PLANAS J, 1997. Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC.

BAŽANT ZP, 2002. Concrete fracture models: testing and practice. Engineering Fracture Mechanics, 69 165-205.

BAŽANT ZP, OH BH, 1983. Crack band theory for fracture of concrete. Materials and Structures (RILEM), 16 (93), pp.155-177.

COMMITE EURO-INTERNATIONAL DU BETON (CEB) & FEDERATION INTERNATIONALE DE LA PRÉCONTRAITE (FIP). **Model Code 1990 – Design Code**, Lausanne: Thomas Telford Services Ltd, 1991.

DEMENT JM, HEIN MJ, STAYNER LT, LEHMAN E, 2007. Follow-up study of chrysotile textile workers: cohort mortality and exposure-response. Occupational and Environmental Medicine. Vol. 64 pages 616-625.

DIANA, 2005. User's Manual -- Release 9. Last modified Fri Apr 29 13:34:17 CEST 2005.

LIMA PRL, 2004. Análise teórica e experimental de compósitos reforçados com fibras de sisal. Tese Doutorado. Universidade Federal do Rio de Janeiro.

NAAMAN AE, NAMUR GG, ALWAN JM, NAJM HS, 1991. **Fiber pullout and bond slip**. I: Analytical study. Journal of structural engineering, V. 117, p.2769-2800.

SANJUÁN MA, TOLEDO FILHO RD, 1998. Effectiveness of crack control at early age on the corrosion of steel bars in low modulus sisal and coconut fiber-reinforced mortars. Cement e Concrete Research, Vol. 28, No. 4, pp. 555-565.

SAVASTANO JR H, ROMA JR LC, MARTELLO LS, 2006. Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Construction and Building Materials 25 668-674

SUINAGA FA, SILVA ORRF, COUTINHO WM, 2006. **O cultivo do sisal**. ISSN 1678-8710 Versão Eletrônica.

TOLEDO FILHO RD, SILVA FA, FAIRBAIM EMR, MELO FILHO JA, 2007. **Durability of compression molded sisal fiber reinforced mortar laminates**. Construction and Building Materials, 23 2409 – 2420.