DESENVOLVIMENTO DE UM CONCENTRADOR SOLAR CILÍNDRICO PARABÓLICO: COMPARAÇÃO ENTRE MODELO E RESULTADO EXPERIMENTAL

Manassés Almeida Gomes¹; Germano Pinto Guedes²

 Bolsista PROBIC/UEFS, Graduando em Bacharelado em Física, Universidade Estadual de Feira de Santana, e-mail: manasses.fis@gmail.com
Orientador, Departamento de Física, Universidade Estadual de Feira de Santana, e-mail: germano@uefs.br

PALAVRAS-CHAVE: concentrador solar, dados experimentais, eficiência.

INTRODUÇÃO

Uma das formas de aproveitamento da energia solar são os coletores solares que segundo Kalogirou (2009) são distinguidos pelo seu movimento (estacionário, acompanhamento em um eixo, acompanhamento em dois eixos) e faixa de temperatura em que operam. Dentre estes, está o concentrador solar cilíndrico parabólico que movimenta-se em uma direção acompanhando o movimento aparente do sol de forma que sua superfície esteja sempre perpendicular aos raios solares, tendo como caracterísrtica uma faixa de temperatura de 60 – 400°C a depender da acurácia no processo de fabricação, refletividade do material utilizado, mecanismos de minimização das perdas, grau de perfeição no "acompanhamento do sol". O concentrador solar cilíndrico parabólico é apontado por pesquisadores como um dos mais eficientes aquecedores, pois os sistemas óticos utilizados na obtenção de altas temperaturas consistem em estruturas parabólicas espelhadas que tem a propriedade de concentrar toda a radiação incidente numa zona situada no plano focal, permitindo que o conjunto atinja uma temperatura mais elevada se comparado a outros sistemas.

Considerando as informações acima, objetiva-se projetar, simular e construir um concentrador solar cilindro-parabólico para aquecimento de fluidos, em fim, estudar o funcionamento, variáveis físicas envolvidas, parâmetros mais influentes com o intuito de aumentar a eficiência, visto que hoje em dia ela varia entre 18% e 22%. Neste trabalho, definiram-se inicialmente os parâmetros geométricos: área, abertura e distância focal, de maneira a permitir maior mobilidade do conjunto no acompanhamento do sol sem comprometer a sua eficiência.Uma forma comum de aproveitamento da energia solar é a conversão da energia luminosa em calor, para isso, são utilizados principalmente dois tipos de geometrias em coletores solares, a saber, plana e cilíndrica parabólica, sendo que esta última tem uma vantagem em relação à primeira, pois concentra toda energia incidente na região focal, possibilitando assim, uma maior eficiência no aquecimento.

MATERIAIS E MÉTODOS

O trabalho foi dividido em três etapas e na primeira delas fez-se um estudo para avaliar quais os parâmetros geométricos, (largura, comprimento, distância focal, mancha focal), de um concentrador solar já construído, pois esses seriam utilizados na construção de um modelo e para isso, pesquisou-se de que forma são obtidos. Para concluir o objetivo desta etapa buscou-se uma relação entre os parâmetros geométricos (Equação. 1), que descrevesse com precisão a relação entre as quantidades.

Cálculo da mancha focal

Levando em conta o ângulo de abertura em que os raios solares chegam à Terra, aproximadamente 0,53 °, e pela lei de Snell é sabido que os raios são refletidos com ângulo igual ao incidente e no mesmo plano e são justamente as interseções destes raios refletidos por toda a placa coletora que forma a mancha focal, como exposto na figura 1.

Figura 1: Ilustração das quantidades envolvidas na determinação do diâmetro da mancha focal. (fora de escala).

Na eq. acima m_f representa o diâmetro da mancha focal, ε ângulo de abertura em que os raios solares chegam à Terra e α o ângulo de abertura do coletor. Após o conhecimento das dimensões, foi iniciado o modelamento matemático (segunda etapa), que consistiu em determinar à equação diferencial que rege a variação temporal da temperatura do tubo absorvedor, a partir de um balanço energético que considera a energia total que chega ao receptor e suas perdas por radiação e convecção, como também, as dimensões da parábola, massas e calor específico e a partir desta calcular através de programa computacional qual seria a temperatura atingida pelo conjunto.

A terceira etapa do trabalho teve como objetivo a validação do modelo e para isso foram realizadas medidas com o aparelho. Neste foi acoplado um pireliômetro (Kipp&Zonen), disposto paralelamente ao vértice da parábola para que mantivesse a mesma inclinação em relação ao sol, pois apenas a radiação solar direta é concentrada pelo espelho parabólico e conseqüentemente útil no aquecimento do tubo. Para medir a temperatura foi utilizado um termopar e para melhorar a eficiência ótica o tubo foi pintado de tinta preta, opaca, resistente a altas temperaturas (HOT 600) que é um procedimento indispensável para obtenção de um bom resultado, pois melhora a absorção e diminui a reflexão dos raios solares pelo tubo e conseqüentemente aumenta a eficiência térmica (Equação 2), visto que depende diretamente da capacidade que o tubo tem em absorver calor. Abaixo uma foto do sistema em operação.

Figura 2: Aparato utilizado experimentalmente. (Em detalhe o radiômetro e pireliômetro 'superior esquerdo e direito respectivamente', termopar e conjunto de multímetros 'inferior esquerdo e direito respectivamente').

Ainda com o intuito de majorar a eficiência a placa foi polida buscando uma melhor refletividade.

Os dados foram colhidos nos meses de fevereiro, março e abril, nos quais o acompanhamento da posição do sol pelo concentrador era manual, utilizando o mecanismo de direcionamento do pireliômetro como baliza, este consiste em mover o aparelho até que a mancha do primeiro orifício esteja exatamente sobre o segundo. (Vale ressaltar que todo o processo foi realizado sem a presença de fluido dentro do tubo receptor).

RESULTADOS E DISCUSSÕES

Foram coletados dados de temperaturas atingidas pelo tubo e irradiância simultaneamente. A partir do tratamento dos dados pôde-se comparar a curva experimental e a prevista pelo modelo. A figura 3 apresenta essa comparação e ainda a distribuição do erro percentual.

Figura 3: A figura (a) mostra um dia (07/04/2010), com muitas nuvens, com máxima teórica de 106 °C e experimental de 81 °C, e na letra (b) é apresentado a distribuição do erro percentual

Como se pôde observar, em quase todos os dias, teoricamente obtém-se aproximadamente 1,3 vezes da temperatura experimental e seu erro é distribuído em torno do erro médio 40 % com um sigma de aproximadamente 19 e para o coeficiente de transferência de calor ajustado o erro médio ficou em torno de 2 %.

Ainda com base nas medidas de radiação, direta e concentrada do experimento, foi constatado que esta última é consideravelmente maior que a energia direta, que justifica a utilidade deste tipo de coletor, pois com um aparato relativamente simples foi possível majorar significativamente a intensidade recebida, como pode ser vista abaixo na figura 4, como também a eficiência ótica obtida.

Figura 4: (a) Gráfico comparativo entre intensidade direta e concentrada, (d) Eficiência ótica calculada a partir dos dados de (c).

Sabendo que a eficiência ótica é definida como a porcentagem da quantidade de energia que o aparelho consegue direcionar ao eixo focal, ela foi calculada a partir deste último gráfico e obteve-se um valor de 58%.

CONSIDERAÇÕES FINAIS

A partir dos resultados obtidos pôde-se concluir que o modelo funciona satisfatoriamente, apesar deste levar em conta a avaliação em conjunto de processos mecânicos (acompanhamento do sol), óticos (geometria, refletividade, absorção) e térmicos (convecção e radiação), ainda assim foi medido um valor máximo de temperatura igual a 114°C podendo este valor ainda ser aumentado se um envoltório for colocado no tubo receptor, pois assim evitamos o contato do tubo com o ambiente externo e conseqüentemente diminuindo as perdas por convecção.

Na avaliação das temperaturas observa-se que o comportamento das curvas é semelhante e que há uma discrepância entre as temperaturas obtidas a partir do modelo e experimentalmente. Um dos motivos para isso é a imprecisão do método de obtenção do coeficiente de transferência de calor "h" utilizado que depende da velocidade do vento que é difícil avaliar, pois varia a todo instante como também da viscosidade do ar que varia com altitude do local, umidade, pressão. Por isto, foi construído um gráfico com um valor ajustado de "h' e observado que os valores de temperaturas do modelo e experimental se aproximam para um coeficiente aproximadamente igual a 110 W/m²K. A diferença nas temperaturas atingidas também se deve às perdas por possíveis defeitos de fabricação como imperfeição da superfície refletora, algum desvio na localização do tubo, bem como o fato de ter considerado constantes a temperatura ambiente, velocidade do vento ou ainda pode ter ocorrido imprecisão no acompanhamento do sol, apesar destes, a eficiência térmica encontrada foi de aproximadamente 52,26% e a eficiência global, que é definida como o produto das eficiências, de 30%, que é um valor que está dentro do aceitável para aparelhos usando um aparato com a mesma geometria segundo a literatura, podendo ainda o dispositivo ser refinado inserindo outras variáveis como umidade do ar, temperatura ambiente, variação do espectro devido à passagem de nuvens e gases, velocidade do vento, etc.. Vale ressaltar que, além de condições extremamente favoráveis à implementação dessa tecnologia, com altas intensidades chegando a atingir mais 1000W/m² e um dia solar de aproximadamente 12 horas em quase todo o ano, a necessidade de melhorar a eficiência de sistemas solares, acentuam a viabilidade de implementar esse projeto para um melhor aproveitamento da energia solar.

REFERÊNCIAS

KALOGIROU, S., 1996. Parabolic trough collector system for low temperature steam generation: design and performance characteristics, Applied Energy, No. 1. Pp. 1 19. 1996.

FANTINELLI, JANE T. Tecnologia Solar de interesse social e baixo custo para aquecimento de água na moradia. UNICAMP, BR, 2002. Dissertação de Mestrado

ASHRAE STANDARD 93, Methods of testing to determinate the thermal performance of solar collectors. ANSI/ASHRAE, 2003.

TIWARI, G. N., 2004. Fundamentals , design, modeling and applications. New Delhi: Narosa Publishing House, 2004. ISBN 81-7319-450-5

ARASU, A. VALAN & SORNAKUMAR, T., Design, manufacture and testing of fiberglass reinforced parabolic trough for parabolic trough solar collectors. Solar Energy 81 (2007) 1273-1279.

O.GARCÍA-VALLADARES, N. VELÁZQUEZ, Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers, International Journal of Heat and Mass Transfer (2008), doi: 10.1016/j.ijheatmasstransfer.2008.08.004

REDDY, K. S. & KUMAR, K. RAVI, 2008. Thermal analysis of solar parabolic trough with porous disc receiver. Available online 23 December 2008

KALOGIROU, SOTERIS., 2009. Solar energy engineering : processes and systems, Elsevier.—1st ed.